A Brief Synopsis of Army Contributions to Early Health Physics and Nuclear Engineering

Gregory R. Komp, CHP
Class of ‘92

The views presented are those of the speaker and do not necessarily represent the views of the U.S. Army
A Brief Personal History

• 1978 Commissioned in the Army Chemical Corps
• 1979 Assigned to lead Army “Alpha Team”
• 1980 Assigned as Ft Ord RSO
• 1982 to 1984 Taught Radiological Safety Course
• 1984 Resigned from Army and then….
Health Physicist—What’s that?
Taking radiographs aboard Relief at Siboney, Cuba, 1898.

Cirillo V J AJR 2000;174:1233-1239

©2000 by American Roentgen Ray Society
Early Guidelines from 1898

In 1900, Captain William C. Borden published his landmark monograph, *The Use of the Rontgen Ray by the Medical Department of the United States Army in the War With Spain (1898)*, which codified the Army Medical Department's wartime X-ray data.

Borden concluded that the two most important factors for the production of X-ray burns were the *time of exposure* and the *proximity of the cathode tube* to the body surface.

Guidelines were proposed to protect patients.
- exposure should never exceed 30 min;
- the X-ray tube should never be closer than 10 inches (25.4 cm) from the body
- repeated exposures should never be made within 3 days of the previous exposure,
Manhattan Engineering District (MED) Medical Section (MS)

- Medical Section
 - COL Warren, MD
- Industrial Medicine
 - CPT Ferry, MD
- Medical Research
 - MAJ Friedell, MD
- Clinical Medicine
 - LTC Rea, MD
Manhattan Engineering District
Industrial Medicine Branch

• **Objective:** Identify & control the industrial hazards associated with atomic processes
 – Medical Corps
 – Corps of Engineers

• Metallurgical Laboratory Oversight
 – Clinton Laboratories
 – Hanford Engineer Works
 – Monsanto Chemical Company Plant
 – Monitored University of Rochester’s Industrial Medicine Research Program.
15 Officers & 12 Enlisted Men

- Clinton
- Metallurgical Lab
- Los Alamos
- University of Rochester
- Nagasaki team (COL Warren)
- Hiroshima team (LTC Friedell)
- Negotiations team (IRC, AMEDD, USA, MD)
1950s

- Weapons program
- Nuclear research
- Teaching
- Four Nuclear Weapons Medical Officers (MOS 3304)
- Four Nuclear Medical Science Officers (MOS 3308)
1st Radiation Safety Support Unit

- Organized on Dec 8th, 1952 at Ft. McClellan, Alabama
- Assigned to the Chemical Corps Training Command
- Redesignated on May 10th 1959 as the U.S. Army Chemical Corps Radiological Unit
- Relocated to Dugway Proving Ground, Utah on October 23rd, 1960
- Decommissioned on August 1st 1962 and it's assets reorganized as a U.S. Army Material Command activity
- Supported Nuclear weapons tests and conducted radiological safety training
Army Chemical Corps Radiological Unit ~ 1960

Unit Headquarters

Service Platoon
- Instrument Repair Section

Dosimetry Platoon
- Supply Section
- Monitoring Section

Operations Platoon
- Decontamination Section
- Rad-Chem Lab Section (Navy)
Army Chemical Corps Radiological Mission

- June 1958 Chemical Corps Radiological Warfare Mission Approved
 - Chemical Corps officers as the U. S. Army’s experts in radiological warfare
 - Technical responsibility for radiological warfare and radiological defense to include research and development on RW agents
 - Disposal of Army radioactive wastes
 - Health physics, exclusive of responsibilities directly assigned to the Surgeon General
 - Radiological Safety Support of JTF-7 and Nevada Test Site
 - Development of rapid and continuous monitoring and surveying
 - Conducting courses of instruction in radiological safety
 - Reduction of radiological hazards resulting from atomic hazards from accidents when nuclear materials are in custody
Radiological Safety Course

• Established 1958
• Emphasizes radiological safety instead of traditional radiological defense
 – Plan, detect, and control hazards resulting from:
 • Use and handling of radioactive materials
 • Materials resulting from nuclear detonations
• Expected to train
 – Commissioned officers
 – Civilian personnel
 – Atomic Energy Commission personnel

Signed by:
W.R. Currie
Brigadier General, USA
Asst CCmLO for Planning & Doctrine
Army Nuclear Power Program
1954 to 1977

SM-1A – Ft Greely
PM-1 – Sundance
SL-1A – NRTS
MH-1A – Sturgis
PM-3A – McMurdo
SM-1 – Ft Belvoir
PM-2A – Camp Century
Background
Army Nuclear Power Program

• Background
• There was interest in the possible application of nuclear power to land-based military needs as early as 1952.
• A memo from the Secretary of Defense, dated 10 Feb 1954, assigned the Army the responsibility for:
 – "developing nuclear power plants to supply heat and electricity at remote and relatively inaccessible military installations."
 – The Department of the Army (DA) established the Army Nuclear Power Program and assigned it to the Corps of Engineers.
 – Shutdown 1977
ANPP significant accomplishments

- Detailed designs for pressurized and boiling water reactors, as well as gas-cooled and liquid-metal cooled reactors.
- First nuclear power plant with a containment structure (SM-1)
- First use of stainless steel for fuel element cladding (SM-1)
- First nuclear power plant in the US to supply electrical power to a commercial grid (SM-1)
- First in-place reactor vessel annealing, using nuclear heat source, in the US (SM-1A)
- First steam generator replacement in US (SM-1A)
- First pressure-suppression containment (SM-1A)
- First operational boiling-water reactor power plant (SL-1)
- First portable, pre-packaged, modular nuclear power plant to be installed, operated, and removed (PM-2A)
- First use of nuclear power for desalinization (PM-3A)
- First land-transportable, mobile nuclear power plant (ML-1)
- First nuclear powered closed-loop (Brayton) gas turbine cycle (ML-1)
- First floating (barge-mounted) nuclear power plant (MH-1A)
Nuclear power plant operator training

• The Nuclear Power Plant Operator Course (NPPOC) was conducted at Ft. Belvoir.

• Applicants for the program were enlisted men who had to commit to serving a minimum of two years after completion of training.

• Requirements for admission to the NPPOC included aptitude test scores at least as stringent as those required for admission to Officer Candidate School.

• Over 1,000 Nuclear Power Plant operators were licensed between the years 1958 through 1977.

• The NPPOC was an intense and academically challenging year-long course.

• Many operator transferred to Medical Service Corps and Army Chemical Corps following termination of the program.
History of Army Radiation Safety Program

• Separate, almost independent programs dating from 1950s:
 – Medical Department – AR 40-580
 – Logistics community – AR 700-52
 – Army Corps of Engineers
• No HQDA subject matter expert
• Radioactive commodity problems
• IG inspection of Army reactors
• Laser, radioactive commodity, and microwave proliferation
General Approach Today

• Centralized policy
 – Army Radiation Safety Officer
 – Army Radiation Safety Council

• Decentralized administration
 – Army Commands – mission programs
 – Installations – garrison programs
 – Army Reactor Office
Discussion

There is always room for miscommunication